Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article Dans Anglais | MEDLINE | ID: covidwho-2200318

Résumé

The nasal-associated lymphoid tissues (NALT) are generally accepted as an immune induction site, but the activation of naïve T-cells in that compartment has not been well-characterized. I wanted to determine if early events in naïve CD4+ T cell activation and the extent of antigen specific cell division are similar in NALT to that observed in other secondary lymphoid compartments. I performed antigen tracking experiments and analyzed the activation of naïve antigen-specific CD4+ T cells in the nasal-associated lymphoid tissues (NALT). I directly observed transepithelial transport of fluorescently labeled antigen from the lumen of the airway to the interior of the NALT two hours following immunization. One day following intranasal (i.n.) immunization with antigen and adjuvant, antigen-specific CD4+ T cells in the NALT associated as clusters, while antigen-specific CD4+ T cells in control mice immunized with adjuvant only remained dispersed. The antigen-specific CD4+ populations in the NALT and cranial deep cervical lymph nodes of immunized mice expanded significantly by day three following immunization. These findings are consistent with initial activation of naïve CD4+ T cells in the NALT and offer insight into adjuvant mechanism of flagellin in the upper respiratory compartment.


Sujets)
Flagelline , Tissu lymphoïde , Vaccins sous-unitaires , Animaux , Souris , Adjuvants immunologiques , Administration par voie nasale , Lymphocytes T CD4+ , Flagelline/immunologie , Immunisation , Souris de lignée BALB C , Muqueuse nasale , Lymphocytes T , Vaccins sous-unitaires/immunologie
2.
Proc Natl Acad Sci U S A ; 119(24): e2202069119, 2022 06 14.
Article Dans Anglais | MEDLINE | ID: covidwho-1890415

Résumé

Current vaccines have greatly diminished the severity of the COVID-19 pandemic, even though they do not entirely prevent infection and transmission, likely due to insufficient immunity in the upper respiratory tract. Here, we compare intramuscular and intranasal administration of a live, replication-deficient modified vaccinia virus Ankara (MVA)-based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (S) vaccine to raise protective immune responses in the K18-hACE2 mouse model. Using a recombinant MVA expressing firefly luciferase for tracking, live imaging revealed luminescence of the respiratory tract of mice within 6 h and persisting for 3 d following intranasal inoculation, whereas luminescence remained at the site of intramuscular vaccination. Intramuscular vaccination induced S-binding-Immunoglobulin G (IgG) and neutralizing antibodies in the lungs, whereas intranasal vaccination also induced Immunoglobulin A (IgA) and higher levels of antigen-specific CD3+CD8+IFN-γ+ T cells. Similarly, IgG and neutralizing antibodies were present in the blood of mice immunized intranasally and intramuscularly, but IgA was detected only after intranasal inoculation. Intranasal boosting increased IgA after intranasal or intramuscular priming. While intramuscular vaccination prevented morbidity and cleared SARS-CoV-2 from the respiratory tract within several days after challenge, intranasal vaccination was more effective as neither infectious virus nor viral messenger (m)RNAs were detected in the nasal turbinates or lungs as early as 2 d after challenge, indicating prevention or rapid elimination of SARS-CoV-2 infection. Additionally, we determined that neutralizing antibody persisted for more than 6 mo and that serum induced to the Wuhan S protein neutralized pseudoviruses expressing the S proteins of variants, although with less potency, particularly for Beta and Omicron.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Immunoglobuline A , Appareil respiratoire , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Virus de la vaccine , Administration par voie nasale , Angiotensin-converting enzyme 2/génétique , Animaux , Anticorps neutralisants/sang , Anticorps antiviraux/sang , COVID-19/prévention et contrôle , COVID-19/transmission , Vaccins contre la COVID-19/administration et posologie , Vaccins contre la COVID-19/immunologie , Humains , Immunoglobuline A/sang , Immunoglobuline G/sang , Souris , Souris transgéniques , Appareil respiratoire/immunologie , SARS-CoV-2/immunologie , Glycoprotéine de spicule des coronavirus/immunologie , Vaccination/méthodes , Virus de la vaccine/génétique , Virus de la vaccine/immunologie
3.
Cell Rep Med ; 1(6): 100095, 2020 09 22.
Article Dans Anglais | MEDLINE | ID: covidwho-779772

Résumé

Induction of protective mucosal T cell memory remains a formidable challenge to vaccinologists. Using a combination adjuvant strategy that elicits potent CD8 and CD4 T cell responses, we define the tenets of vaccine-induced pulmonary T cell immunity. An acrylic-acid-based adjuvant (ADJ), in combination with Toll-like receptor (TLR) agonists glucopyranosyl lipid adjuvant (GLA) or CpG, promotes mucosal imprinting but engages distinct transcription programs to drive different degrees of terminal differentiation and disparate polarization of TH1/TC1/TH17/TC17 effector/memory T cells. Combination of ADJ with GLA, but not CpG, dampens T cell receptor (TCR) signaling, mitigates terminal differentiation of effectors, and enhances the development of CD4 and CD8 TRM cells that protect against H1N1 and H5N1 influenza viruses. Mechanistically, vaccine-elicited CD4 T cells play a vital role in optimal programming of CD8 TRM and viral control. Taken together, these findings provide further insights into vaccine-induced multifaceted mucosal T cell immunity with implications in the development of vaccines against respiratorypathogens, including influenza virus and SARS-CoV-2.


Sujets)
Adjuvants vaccinaux/pharmacologie , Poumon/effets des médicaments et des substances chimiques , Lymphocytes T/effets des médicaments et des substances chimiques , Résines acryliques/administration et posologie , Résines acryliques/pharmacologie , Adjuvants vaccinaux/administration et posologie , Animaux , Lymphocytes T CD4+/effets des médicaments et des substances chimiques , Lymphocytes T CD4+/immunologie , Lymphocytes T CD8+/effets des médicaments et des substances chimiques , Lymphocytes T CD8+/immunologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/immunologie , Inflammation , Virus de la grippe A/immunologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/pharmacologie , Lymphocytes intra-épithéliaux/effets des médicaments et des substances chimiques , Lymphocytes intra-épithéliaux/immunologie , Poumon/immunologie , Cellules T mémoire/effets des médicaments et des substances chimiques , Cellules T mémoire/immunologie , Souris , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/virologie , Récepteurs aux antigènes des cellules T/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Lymphocytes T/immunologie , Récepteurs de type Toll/agonistes
SÉLECTION CITATIONS
Détails de la recherche